Get Tability: OKRs that don't suck | Learn more →

1 strategies and tactics for Mlops

What is Mlops strategy?

Team success often hinges on the ability to develop and implement effective strategies and tactics. It's a bit like playing chess, except that you have more than 1 player on each side.

Identifying the optimal Mlops strategy can be challenging, especially when everyday tasks consume your time. To help you, we've assembled a list of examples to ignite your creativity.

Feel free to copy these examples into your favorite application, or leverage Tability to maintain accountability.

How to write your own Mlops strategy with AI

While we have some examples available, it's likely that you'll have specific scenarios that aren't covered here. You can use our free AI generator below or our more complete goal-setting system to generate your own strategies.

Mlops strategy examples

You'll find below a list of Mlops tactics. We also included action items for each template to make it more practical and useful.

Strategies and tactics for implementing a tweet sentiment analysis with MLOps

  • ⛳️ Strategy 1: Establish your development environment

    • Set up a virtual environment using Python's venv module
    • Install cookiecutter and create a project structure template
    • Initialize a Git repository for version control
    • Create and configure a GitHub repository for the project
    • Install essential Python packages for data processing and machine learning
    • Define a requirements.txt file to manage project dependencies
    • Set up pre-commit hooks to enforce code styles
    • Create a README.md file outlining project objectives and setup instructions
    • Configure environment variables for secure management of credentials
    • Document initial project structure and setup process
  • ⛳️ Strategy 2: Implement data management and versioning

    • Identify a dataset containing tweets for sentiment analysis
    • Set up a DVC repository to track dataset versions
    • Push the dataset to a remote storage like AWS S3
    • Document data transformation steps using DVC pipelines
    • Integrate data versioning into the project structure
    • Automate data download and preparation using DVC commands
    • Ensure data integrity by checking dataset hashes
    • Keep data configuration files like .dvc files under version control
    • Create a data dictionary to describe dataset features
    • Use DVC to monitor dataset changes and update model training accordingly
  • ⛳️ Strategy 3: Develop, monitor, and deploy the machine learning pipeline

    • Define a clear modelling pipeline using scikit-learn or similar frameworks
    • Checkpoint training experiments using MLflow to track model parameters and performance
    • Save model artefacts and logs to a cloud storage service like AWS S3
    • Implement automated unit tests to verify data and model integrity
    • Set up CI/CD pipelines using GitHub Actions or similar services
    • Schedule builds for training and deployment using a CI/CD tool
    • Visualise the pipeline and model metrics using MLflow or Dagshub dashboards
    • Deploy the model as a REST API using AWS Lambda or a similar service
    • Continuously monitor the deployed model for performance and drift
    • Maintain a living documentation of the project's workflow and changes

How to track your Mlops strategies and tactics

Having a plan is one thing, sticking to it is another.

Having a good strategy is only half the effort. You'll increase significantly your chances of success if you commit to a weekly check-in process.

A tool like Tability can also help you by combining AI and goal-setting to keep you on track.

More strategies recently published

We have more templates to help you draft your team goals and OKRs.

Planning resources

OKRs are a great way to translate strategies into measurable goals. Here are a list of resources to help you adopt the OKR framework:

Table of contents