Tability is a cheatcode for goal-driven teams. Set perfect OKRs with AI, stay focused on the work that matters.
What are Machine Learning Product OKRs?
The Objective and Key Results (OKR) framework is a simple goal-setting methodology that was introduced at Intel by Andy Grove in the 70s. It became popular after John Doerr introduced it to Google in the 90s, and it's now used by teams of all sizes to set and track ambitious goals at scale.
How you write your OKRs can make a huge difference on the impact that your team will have at the end of the quarter. But, it's not always easy to write a quarterly plan that focuses on outcomes instead of projects.
That's why we have created a list of OKRs examples for Machine Learning Product to help. You can use any of the templates below as a starting point to write your own goals.
If you want to learn more about the framework, you can read our OKR guide online.
The best tools for writing perfect Machine Learning Product OKRs
Here are 2 tools that can help you draft your OKRs in no time.
Tability AI: to generate OKRs based on a prompt
Tability AI allows you to describe your goals in a prompt, and generate a fully editable OKR template in seconds.
- 1. Create a Tability account
- 2. Click on the Generate goals using AI
- 3. Describe your goals in a prompt
- 4. Get your fully editable OKR template
- 5. Publish to start tracking progress and get automated OKR dashboards
Watch the video below to see it in action 👇
Tability Feedback: to improve existing OKRs
You can use Tability's AI feedback to improve your OKRs if you already have existing goals.
- 1. Create your Tability account
- 2. Add your existing OKRs (you can import them from a spreadsheet)
- 3. Click on Generate analysis
- 4. Review the suggestions and decide to accept or dismiss them
- 5. Publish to start tracking progress and get automated OKR dashboards
Tability will scan your OKRs and offer different suggestions to improve them. This can range from a small rewrite of a statement to make it clearer to a complete rewrite of the entire OKR.
Machine Learning Product OKRs examples
We've added many examples of Machine Learning Product Objectives and Key Results, but we did not stop there. Understanding the difference between OKRs and projects is important, so we also added examples of strategic initiatives that relate to the OKRs.
Hope you'll find this helpful!
OKRs to launch machine learning product on website
- ObjectiveLaunch machine learning product on website
- KRGenerate at least 100 sign-ups for the machine learning product through website registration
- Collaborate with influencers or industry experts to promote the machine learning product
- Implement targeted online advertising campaigns to drive traffic to the website
- Optimize website registration page to increase conversion rate
- Run referral programs and offer incentives to encourage users to refer others
- KRGenerate a revenue of $50,000 from sales of the machine learning product
- Implement effective online advertising and social media campaigns to reach potential customers
- Identify target market and create a comprehensive marketing strategy for machine learning product
- Train sales team and provide them with necessary resources to effectively promote machine learning product
- Conduct market research to determine competitive pricing and set optimal price point
- KRIncrease website traffic by 20% through targeted marketing campaigns
- Optimize website content with relevant keywords to improve organic search rankings
- Conduct extensive keyword research to identify high-performing search terms
- Develop and implement targeted advertising campaigns on social media platforms
- Collaborate with industry influencers to gain exposure and drive traffic to the website
- KRAchieve a customer satisfaction rating of 4 out of 5 through user feedback surveys
- Analyze feedback survey data to identify areas for improvement and prioritize actions
- Continuously monitor customer satisfaction ratings and adjust strategies as needed for improvement
- Implement changes and improvements based on user feedback to enhance customer satisfaction
- Develop and distribute user feedback surveys to gather customer satisfaction ratings
OKRs to establish a proficient AI team with skilled ML engineers and product manager
- ObjectiveEstablish a proficient AI team with skilled ML engineers and product manager
- KRRecruit an experienced AI product manager with a proven track record
- Reach out to AI professionals on LinkedIn
- Post the job ad on AI and tech-focused job boards
- Draft a compelling job description for the AI product manager role
- KRConduct an effective onboarding program to integrate new hires into the team
- Arrange team building activities to promote camaraderie
- Develop a comprehensive orientation package for new hires
- Assign mentors to guide newcomers in their roles
- KRInterview and hire 5 qualified Machine Learning engineers
- Conduct interviews and evaluate candidates based on benchmarks
- Promote job vacancies on recruitment platforms and LinkedIn
- Develop detailed job descriptions for Machine Learning engineer positions
Machine Learning Product OKR best practices
Generally speaking, your objectives should be ambitious yet achievable, and your key results should be measurable and time-bound (using the SMART framework can be helpful). It is also recommended to list strategic initiatives under your key results, as it'll help you avoid the common mistake of listing projects in your KRs.
Here are a couple of best practices extracted from our OKR implementation guide 👇
Tip #1: Limit the number of key results
The #1 role of OKRs is to help you and your team focus on what really matters. Business-as-usual activities will still be happening, but you do not need to track your entire roadmap in the OKRs.
We recommend having 3-4 objectives, and 3-4 key results per objective. A platform like Tability can run audits on your data to help you identify the plans that have too many goals.
Tip #2: Commit to weekly OKR check-ins
Don't fall into the set-and-forget trap. It is important to adopt a weekly check-in process to get the full value of your OKRs and make your strategy agile – otherwise this is nothing more than a reporting exercise.
Being able to see trends for your key results will also keep yourself honest.
Tip #3: No more than 2 yellow statuses in a row
Yes, this is another tip for goal-tracking instead of goal-setting (but you'll get plenty of OKR examples above). But, once you have your goals defined, it will be your ability to keep the right sense of urgency that will make the difference.
As a rule of thumb, it's best to avoid having more than 2 yellow/at risk statuses in a row.
Make a call on the 3rd update. You should be either back on track, or off track. This sounds harsh but it's the best way to signal risks early enough to fix things.
Save hours with automated OKR dashboards
Your quarterly OKRs should be tracked weekly if you want to get all the benefits of the OKRs framework. Reviewing progress periodically has several advantages:
- It brings the goals back to the top of the mind
- It will highlight poorly set OKRs
- It will surface execution risks
- It improves transparency and accountability
Spreadsheets are enough to get started. Then, once you need to scale you can use Tability to save time with automated OKR dashboards, data connectors, and actionable insights.
How to get Tability dashboards:
- 1. Create a Tability account
- 2. Use the importers to add your OKRs (works with any spreadsheet or doc)
- 3. Publish your OKR plan
That's it! Tability will instantly get access to 10+ dashboards to monitor progress, visualise trends, and identify risks early.
More Machine Learning Product OKR templates
We have more templates to help you draft your team goals and OKRs.
OKRs to build a comprehensive, user-friendly HR platform OKRs to enhance analytical thinking and problem-solving skills OKRs to optimize and streamline procurement processes OKRs to enhance overall business visibility OKRs to implement a robust chaos testing system in our production environment OKRs to develop a sustainable design concept for the company's operations