Get Tability: OKRs that don't suck | Learn more →

2 OKR examples for Product Science

Turn your spreadsheets into OKR dashboards with Tability

Tability is a cheatcode for goal-driven teams. Set perfect OKRs with AI, stay focused on the work that matters.

What are Product Science OKRs?

The Objective and Key Results (OKR) framework is a simple goal-setting methodology that was introduced at Intel by Andy Grove in the 70s. It became popular after John Doerr introduced it to Google in the 90s, and it's now used by teams of all sizes to set and track ambitious goals at scale.

Creating impactful OKRs can be a daunting task, especially for newcomers. Shifting your focus from projects to outcomes is key to successful planning.

We've tailored a list of OKRs examples for Product Science to help you. You can look at any of the templates below to get some inspiration for your own goals.

If you want to learn more about the framework, you can read our OKR guide online.

The best tools for writing perfect Product Science OKRs

Here are 2 tools that can help you draft your OKRs in no time.

Tability AI: to generate OKRs based on a prompt

Tability AI allows you to describe your goals in a prompt, and generate a fully editable OKR template in seconds.

Watch the video below to see it in action 👇

Tability Feedback: to improve existing OKRs

You can use Tability's AI feedback to improve your OKRs if you already have existing goals.

AI feedback for OKRs in Tability

Tability will scan your OKRs and offer different suggestions to improve them. This can range from a small rewrite of a statement to make it clearer to a complete rewrite of the entire OKR.

Product Science OKRs examples

You will find in the next section many different Product Science Objectives and Key Results. We've included strategic initiatives in our templates to give you a better idea of the different between the key results (how we measure progress), and the initiatives (what we do to achieve the results).

Hope you'll find this helpful!

OKRs to implement MLOps system to enhance data science productivity and effectiveness

  • ObjectiveImplement MLOps system to enhance data science productivity and effectiveness
  • KRConduct training and enablement sessions to ensure team proficiency in utilizing MLOps tools
  • TaskOrganize knowledge-sharing sessions to enable cross-functional understanding of MLOps tool utilization
  • TaskProvide hands-on practice sessions to enhance team's proficiency in MLOps tool
  • TaskCreate detailed documentation and resources for self-paced learning on MLOps tools
  • TaskSchedule regular training sessions on MLOps tools for team members
  • KREstablish monitoring system to track model performance and detect anomalies effectively
  • TaskContinuously enhance the monitoring system by incorporating feedback from stakeholders and adjusting metrics
  • TaskDefine key metrics and performance indicators to monitor and assess model performance
  • TaskEstablish a regular review schedule to analyze and address any detected performance anomalies promptly
  • TaskImplement real-time monitoring tools and automate anomaly detection processes for efficient tracking
  • KRDevelop and integrate version control system to ensure traceability and reproducibility
  • TaskResearch available version control systems and their features
  • TaskIdentify the specific requirements and needs for the version control system implementation
  • TaskTrain and educate team members on how to effectively use the version control system
  • TaskDevelop a comprehensive plan for integrating the chosen version control system into existing workflows
  • KRAutomate deployment process to reduce time and effort required for model deployment
  • TaskResearch and select appropriate tools or platforms for automating the deployment process
  • TaskImplement and integrate the automated deployment process into the existing model deployment workflow
  • TaskIdentify and prioritize key steps involved in the current deployment process
  • TaskDevelop and test deployment scripts or workflows using the selected automation tool or platform

OKRs to implement an effective product science mentoring program

  • ObjectiveImplement an effective product science mentoring program
  • KRAchieve a 90% participant satisfaction rate in the program
  • TaskImplement a feedback system for continuous program improvement
  • TaskAdapt program changes based on participant suggestions
  • TaskOffer response and resolution to participant concerns promptly
  • KRIdentify and train 15 internal employees as mentors by the end of the quarter
  • TaskIdentify potential mentor candidates from each department
  • TaskPlan and implement the mentor training program
  • TaskSchedule and conduct training sessions
  • KREnsure 80% of participants can demonstrate understanding of product science post-mentoring

Product Science OKR best practices

Generally speaking, your objectives should be ambitious yet achievable, and your key results should be measurable and time-bound (using the SMART framework can be helpful). It is also recommended to list strategic initiatives under your key results, as it'll help you avoid the common mistake of listing projects in your KRs.

Here are a couple of best practices extracted from our OKR implementation guide 👇

Tip #1: Limit the number of key results

The #1 role of OKRs is to help you and your team focus on what really matters. Business-as-usual activities will still be happening, but you do not need to track your entire roadmap in the OKRs.

We recommend having 3-4 objectives, and 3-4 key results per objective. A platform like Tability can run audits on your data to help you identify the plans that have too many goals.

Tip #2: Commit to weekly OKR check-ins

Don't fall into the set-and-forget trap. It is important to adopt a weekly check-in process to get the full value of your OKRs and make your strategy agile – otherwise this is nothing more than a reporting exercise.

Being able to see trends for your key results will also keep yourself honest.

Tip #3: No more than 2 yellow statuses in a row

Yes, this is another tip for goal-tracking instead of goal-setting (but you'll get plenty of OKR examples above). But, once you have your goals defined, it will be your ability to keep the right sense of urgency that will make the difference.

As a rule of thumb, it's best to avoid having more than 2 yellow/at risk statuses in a row.

Make a call on the 3rd update. You should be either back on track, or off track. This sounds harsh but it's the best way to signal risks early enough to fix things.

Save hours with automated OKR dashboards

AI feedback for OKRs in Tability

Quarterly OKRs should have weekly updates to get all the benefits from the framework. Reviewing progress periodically has several advantages:

Spreadsheets are enough to get started. Then, once you need to scale you can use Tability to save time with automated OKR dashboards, data connectors, and actionable insights.

How to get Tability dashboards:

That's it! Tability will instantly get access to 10+ dashboards to monitor progress, visualise trends, and identify risks early.

More Product Science OKR templates

We have more templates to help you draft your team goals and OKRs.

Table of contents