Get Tability: OKRs that don't suck | Learn more →

Throughput metrics and KPIs

What are Throughput metrics?

Finding the right Throughput metrics can be daunting, especially when you're busy working on your day-to-day tasks. This is why we've curated a list of examples for your inspiration.

Copy these examples into your preferred tool, or adopt Tability to ensure you remain accountable.

Find Throughput metrics with AI

While we have some examples available, it's likely that you'll have specific scenarios that aren't covered here. You can use our free AI metrics generator below to generate your own strategies.

Examples of Throughput metrics and KPIs

Metrics for Handling Log Files

  • 1. Throughput

    Measures the number of log files processed per minute to ensure the service meets the 40k requirement

    What good looks like for this metric: 40,000 log files per minute

    Ideas to improve this metric
    • Optimize log processing algorithms
    • Upgrade server hardware
    • Use a load balancer to distribute requests
    • Implement batch processing for logs
    • Minimize unnecessary logging
  • 2. Latency

    Measures the time it takes to process each log file from receipt to completion

    What good looks like for this metric: Less than 100 milliseconds

    Ideas to improve this metric
    • Streamline data pathways
    • Prioritise real-time log processing
    • Identify and remove processing bottlenecks
    • Utilise caching mechanisms
    • Optimize database queries
  • 3. Error Rate

    Tracks the percentage of log files that are not processed correctly

    What good looks like for this metric: Less than 1%

    Ideas to improve this metric
    • Implement robust error handling mechanisms
    • Conduct regular integration tests
    • Utilise validation before processing logs
    • Enhance logging system for transparency
    • Review and improve exception handling
  • 4. Resource Utilisation

    Measures the use of CPU, memory, and network to ensure efficient handling of logs

    What good looks like for this metric: Below 80% for CPU and memory utilisation

    Ideas to improve this metric
    • Optimize code for better performance
    • Implement vertical or horizontal scaling
    • Regularly monitor and adjust resource allocation
    • Use lightweight libraries or frameworks
    • Run performance diagnostics regularly
  • 5. System Uptime

    Tracks the percentage of time the system is operational and able to handle log files

    What good looks like for this metric: 99.9% uptime

    Ideas to improve this metric
    • Implement redundancies in infrastructure
    • Schedule regular maintenance
    • Monitor system health continuously
    • Use reliable cloud services
    • Establish quick recovery protocols

Tracking your Throughput metrics

Having a plan is one thing, sticking to it is another.

Setting good strategies is only the first challenge. The hard part is to avoid distractions and make sure that you commit to the plan. A simple weekly ritual will greatly increase the chances of success.

A tool like Tability can also help you by combining AI and goal-setting to keep you on track.

Tability Insights DashboardTability's check-ins will save you hours and increase transparency

More metrics recently published

We have more examples to help you below.

Planning resources

OKRs are a great way to translate strategies into measurable goals. Here are a list of resources to help you adopt the OKR framework:

Table of contents